

UAV Antenna Pitching Mechanism

Presentation By: Kalli Albright Kaitlyn Barr Dustin Branges Daniel Johnson

Overview

- Background
- Project Goal
- Problem Statement
- Requirements
- Design Process
- Final Product
- Testing
- Conclusion

Kalli Albright - DASL Antenna - April 27th, 2018 - 1

Technology of Wildlife Tracking

- Ways to track animals
 - Very High Frequency (VHF) Radio Telemetry
 - Low cost time intensive
 - Global Positioning System (GPS)
 - High cost more accurate

Figure 1: VHF Collar [1]

Figure 2: VHF Antenna [1]

Project Goal

- Dynamic and Active Systems Lab (DASL)
 - Lead by: Michael Shafer
 - Located at: Northern Arizona University (NAU)
- Mount a directional VHF antenna on a Unmanned Aerial Vehicle (UAV)
 - Decrease tracking cost
 - Decrease tracking time
 - Increase tracking efficiency
 - Less Intrusive

Figure 3: DASL UAV [2]

Problem Statement

- RA-23K VHF antenna
- High gain directional radiation reception pattern
- Objective: Pitch the antenna

Figure 4: RA-23K Antenna [3]

Kaitlyn Barr - DASL Antenna - April 27th, 2018 - 4

Requirements

Kaitlyn Barr - DASL Antenna - April 27th, 2018 - 5

Designs Considered

Figure 6: First Antenna Pitching Mechanism

Figure 7: Second Antenna Pitching Mechanism

Chosen Design Prototype

Design Prototype:

- 2 points of connection
- Small servo
- Linkage system
- Dual Cam arms

Need for Improvement:

- Higher torque servo
- Unify mounts
- Change in sliding location

Figure 8: Third Antenna Pitching Mechanism CAD

Figure 9: Product Prototype

Daniel Johnson - DASL Antenna - April 27th, 2018 - 7

Final Design

Updates:

- New servo motor
- Enlarged motor mount
- Unified mounting brackets
- Added fillets to all parts
- New sliding joint

Figure 10: Final CAD

Daniel Johnson - DASL Antenna - April 27th, 2018 - 8

Final Design

Figure 11: Completed System

Daniel Johnson - DASL Antenna - April 27th, 2018 - 9

Working System

Operations:

- 2 sweeps
- Hold angle
- Sweep

Video 1: Working System

Kalli Albright - DASL Antenna - April 27th, 2018 - 10

Manufacturing

- Must meet maintainable requirement
 - Easily Replaceable parts:
 - 3D Printed on Fortus 250 MC
 - Assemble with 3 tools or less:
 - 1/16th Allen Wrench
 - 5/16th Wrench
 - Needle Nose Pliers

Figure 13: Allen Wrench

Figure 14: Wrench

Figure 12: Fortus 250MC

Figure 15: Pliers

Testing

Major Tests Performed:

- Surface area
- Mass
- Voltage
- Installation Times
- Rotational Range

Figure 16: Angle of Motor v. Angle of Antenna

Kaitlyn Barr - DASL Antenna - April 27th, 2018 - 12

Final Budget

Table 1: Budget Distribution

Category	Cost
Programming	\$92.38
Servo Motor	\$66.89
Fasteners	\$15.82
Printed Parts	\$4.50
Testing	\$14.30
Total	\$193.89

Kalli Albright - DASL Antenna - April 27th, 2018 - 13

Conclusion

Table 2: Requirements and Results

Engineering Requirement	Target	Final Product
Rotational Range	\geq 45 ⁰	60 ⁰
Modes	\geq 2 modes	2 modes
Communication	9600 bit/s	9600 bit/s
Surface Area	$\leq 15 \text{ in}^2$	4.84 in ²
Mass	\leq 0.5 lbs.	0.41 lbs.
Voltage	\leq 5 V	5.11 V
Cost	≤\$500	\$193.89
Installation Time	\leq 60 min	17.25 min
Number of Tools	\leq 3 tools	3 tools
Linkages	\leq 4 links	3 links

Figure 17: Final Antenna Pitching Mechanism

Daniel Johnson- DASL Antenna - April 27th, 2018 - 14

Questions?

Acknowledgements:

Dynamic and Active Systems Lab

National Science Foundation

Northern Arizona University

References

[1] "Wildlife Tracking and Monitoring." *Wildlife ACT*, 26 Oct. 2017, wildlifeact.com/about-wildlife-act/ wildlife-tracking-and-monitoring/.

[2] "UAV Radio Telemetry." Dynamic and Active Systems Laboratory, 27 June 2017,

www.cefns.nau.edu/Groups/dasl/.

[3] "RA-23K VHF Antenna." Telonics Inc., 8 Mar. 2017, www.telonics.com/products/vhfAntennas/RA-23K.php